CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES

نویسندگان

چکیده

Abstract The goal of this article is to extend the work Voevodsky and Morel on homotopy t -structure category motivic complexes context motives for logarithmic schemes. To do so, we prove an analogue Morel’s connectivity theorem show a purity statement $({\mathbf {P}}^1, \infty )$ -local sheaves with log transfers. ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ proved be compatible Voevodsky’s -structure; that is, comparison functor $R^{{\overline {\square }}}\omega ^*\colon {\operatorname {DM}^{eff}}}(k)\to -exact. heart Grothendieck abelian strictly cube-invariant transfers: use it build new version reciprocity in style Kahn-Saito-Yamazaki Rülling.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal inequalities for the power, harmonic and logarithmic means

For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

An Optimal Randomised Logarithmic Time Connectivity Algorithm for the EREW PRAM

Improving a long chain of works we obtain a randomised EREW PRAM algorithm for nding the connected components of a graph G = (V; E) with n vertices and m edges in O(logn) time using an optimal number of O((m + n)= log n) processors. The result returned by the algorithm is always correct. The probability that the algorithm will not complete in O(log n) time is o(n ?c) for any c > 0.

متن کامل

Purity for Similarity Factors

Let R be a regular local ring, K its field of fractions and A1, A2 two Azumaya algebras with involutions over R. We show that if A1 ⊗R K and A1 ⊗R K are isomorphic over K, then A1 and A2 are isomorphic over R. In particular, if two quadratic spaces over the ring R become similar over K then these two spaces are similar already over R. The results are consequences of a purity theorem for similar...

متن کامل

An Optimal Randomized Logarithmic Time Connectivity Algorithm for the Erew Pram

Improving a long chain of works we obtain a randomized EREW PRAM algorithm for nding the connected components of a graph G = (V; E) with n vertices and m edges in O(log n) time using an optimal number of O((m+n)= log n) processors. The result returned by the algorithm is always correct. The probability that the algorithm will not complete in O(log n) time is at most n ?c for any desired c > 0. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Institute of Mathematics of Jussieu

سال: 2021

ISSN: ['1474-7480', '1475-3030']

DOI: https://doi.org/10.1017/s1474748021000256